Seminar at the Institute of Astronomy V.N. Karazin Kharkiv National University

Just-Jahreiß model of the Milky Way disk: basics, predictions and calibration against Gaia data

Kseniia Sysoliatina, Andreas Just Astronomisches Rechen-Institut (ARI), Heidelberg, Germany

Outline

- Properties of the Milky Way
- Galactic simulations and semi-analytic models
- Just-Jahreiß (JJ) model of the Galactic disk
- Local calibration against Gaia
- Global JJ model (4 kpc < R < 14 kpc)
- Conclusions

Galactic studies. What do we know about the Milky Way?

Timeline of the MW surveys

MW-related publication rate

MW morphology and components

MW morphology and components

The Milky Way objects:

- Field stars
- Star clusters
 - open young (Myr), sparse,
 ~10³ stars, trace spiral arms
 - globular old (Gyr), dense, 10⁵
 stars, located in bulge and halo
- Stellar streams (debrises of GCs and dwarf galaxies)
- Gas (mostly H), dust, star formation regions
 - Molecular clouds
 - Warm atomic component
 - Hot gas (e.g. SNe explosions)
 - Dark clouds

Galaxy as a system of N bodies

Newton's law:

$$m_i \ddot{\vec{R}}_i = \vec{F}_i$$
 with $\vec{F}_i = G \sum_{j \neq i} \frac{m_i m_j (\vec{x}_i - \vec{x}_j)}{|\vec{x}_i - \vec{x}_i|^3}$

Mlllenium simulation - N-body simulation of DM halos

Feedback processes in galaxy evolution

Not possible to simulate realistic MW-like galaxies with self-gravitating DM only.

Hydrodynamic simulations of large cosmological volumes include DM + baryonic matter, gravity + feedback processes:

- → Interstellar gas cooling and heating depending on its ρ , T, [M/H], UV and AGN radiation
- → Models of star formation in cold and dense regions
- → Distribution of the energy and metals generated by the stars into the surrounding gas
- → SN Ia and SN II explosions with injection of their energy in the surrounding gas
- → SMBH formation and feedback

Cosmological simulations allow statistical study of the MW-like galaxies, not of the MW itself.

Kinematic models: TRILEGAL code

Assumed density profiles of the MW components → Predicted star counts

TRILEGAI = the TRI-dimensional modeL of the GALaxy (Girardi et al. 2002, 2005; 2012)

TRILEGAL model with the best parameters against SDSS data: median discrepancy (data-model) is as large as 25%.

(Gao et al. 2013)

Stellar dynamics

We can build a galaxy model relying on the basic principles of stellar dynamics, with the stellar evolution/feedback included in a semi-empirical way.

Poisson Eq. (PE)

$$\Delta \Phi = 4 \pi G \rho$$

- 1. Thin-disk approximation: $z/R \ll 1$
- 2. Disk is axisymmetric $\partial/\partial \phi = 0$ (no spiral arms):

$$\frac{1}{R} \frac{\partial}{\partial R} \left(R \frac{\partial \Phi}{\partial R} \right) + \frac{\partial^2 \Phi}{\partial z^2} = 4 \pi G \rho$$

$$z(\Phi) = \int_{0}^{\Phi} \left(8\pi G \int_{0}^{\Phi'} \rho(\Phi'') d\Phi'' \right)^{-1/2} d\Phi'$$

Collisionless Boltzmann Eq. (CBE)

$$\frac{\partial f}{\partial t} + \mathbf{v} \frac{\partial f}{\partial \mathbf{r}} - \frac{\partial \Phi}{\partial \mathbf{r}} \frac{\partial f}{\partial \mathbf{v}} = 0 , \quad f = f(t, \mathbf{x}, \mathbf{v})$$

3. Disk rests in a steady state, i.e, $\partial/\partial t = 0$

First moment of CBE assuming 1-3:

$$\sigma_{z,i}^2 \frac{\partial \rho_i}{\partial z} = -\frac{\partial \Phi}{\partial z} \rho_i \qquad \text{(1M-CBE)}$$

$$\rho_i = \rho_{i,0} e^{-\Phi/\sigma_{z,i}^2}$$

Combined Poisson-Boltzmann Eq. (PBE)

$$z(\Phi) = \int_{0}^{\Phi} \left(8\pi G \int_{0}^{\Phi'} \sum_{i} \rho_{0,i} e^{(-\Phi''/\sigma_{z,i}^{2})} d\Phi'' \right)^{-1/2} d\Phi'$$

Semi-analytic models of the MW

Reconstruction of the MW potential:

1. Disk (+ other components) is approximated as a zero-thickness layer (ZTL). $\Phi(R,0)$ is calculated (for ZTL, analytic solutions exist).

2. Iteratively solve PBE at the different R and, as a result, get a self-consistent

pair $\{\Phi(R,z), \rho(R,z)\}.$

Limitations:

- Works at low z;
- Not applicable to the bulge region;
- May be imprecise for very young populations;
- Predictions for large volumes.

Advantages:

- Does not require extensive computation power and long time;
- Effective parameter space exploration.

Example of SAM: Just-Jahreiß model

Just-Jahreiß model of the MW disk

Just-Jahreiß (JJ) model: semi-analytic model of the MW

disk, self-consistent $\{\Phi, \rho\}$ reconstructed from PBE.

JJ model includes:

- Stellar disk
 - ► Thin
 - ► Thick
- Gaseous disk
 - Molecular
 - Atomic
- Halo
 - Stellar
 - ► DM

Thin disk is described by analytic functions:

Calibrated in the Solar neighbourhood against Hipparcos and Catalog of Nearby Stars (CNS) (Just & Jahreiß 2010, Rybizki & Just 2015), SDSS (Just et al 2011), APOGEE and Gaia data (Sysoliatina & Just 2021).

Sysoliatina & Just (2021)

Gaia - the billion star surveyor

Gaia launch from the European Spaceport in Kourou, French Guiana on 19 Dec 2013.

K. Sysoliatina

Equipped with

- two identical telescopes and imaging system;
- blue and red photometers;
- radial-velocity spectrometer.

Objectives of the ESA mission Gaia:

- Measure positions of ~1 billion stars (in MW and other Local Group members), with an accuracy down to 24 mas.
- Perform spectrophotometric measurements of all objects.
- Derive space velocities of the MW stars.
- Create a three-dimensional structural map of the MW.

The latest release: EDR3 (3 Dec 2020) ~1.5 billion stars with positions, parallaxes and proper motions.

Data-motivated sample geometry

- 1. Populations defined on the CMD
- 2. (d_{min}, d_{max}) chosen such, that G belongs to the range where data are 99% complete & parallax errors are small (a few %).

Gaia DR2 samples in the local volume

Gaia DR2 samples in the local volume

Age distributions of the samples

All ages are well represented.

Chemical information from APOGEE

Red Clump (RC) stars selected in the Solar annulus $\rm R_{\odot} \pm 500~pc$:

Constraining input functions: AMR

$$\begin{split} C(x) &= \\ &\frac{1}{2}(kx+b) \cdot \left[\operatorname{Erf} \left(\frac{kx+b}{\sqrt{2}k\sigma} \right) - \operatorname{Erf} \left(\frac{kx+b-1}{\sqrt{2}k\sigma} \right) \right] + \\ &\frac{k\sigma}{\sqrt{2\pi}} \left[\exp \left(-\frac{(kx+b)^2}{2k^2\sigma^2} \right) - \exp \left(\frac{(kx+b-1)^2}{2k^2\sigma^2} \right) \right] + \\ &\frac{1}{2} \left[1 + \operatorname{Erf} \left(\frac{kx+b-1}{\sqrt{2}k\sigma} \right) \right], \quad \text{where} \quad x = [\operatorname{Fe}/\operatorname{H}] \end{split}$$

where
$$f(t) = \begin{cases} \log(1+q(t/t_p)^{r_d})/\log(1+q) & \text{for thin disk,} \\ \tanh^{r_t}(t/t_0) & \text{for thick disk} \end{cases}$$

 $[Fe/H](t) = [Fe/H]_0 + ([Fe/H]_p - [Fe/H]_0) \cdot f(t),$

Constraining input functions: AMR

JJ model calibration: density profiles

Problem:

- 1. Not enough A and F stars (ages < 4-5 Gyr)
- 2. Density profile is too steep in the model

Attempt of solution:

- Add stars of young ages (modification of SFR)
- Allow these extra stars to be more dynamically heated than expected from AVR

JJ model calibration: density profiles

Optimized parameters

JJ model calibration

Optimized SFR reveals recent SF bursts

Global JJ model (R > 4 kpc)

Radial structure of the MW

Predicted potential and density

Stellar population synthesis

JJ model + Padova / MIST stellar evolution library = predicted CMD.

Available volume options:

- Solar-centered sphere
- Solar-centered cylinder
- R-φ-z "box"

Special populations (e.g. Red Clump)

The JJ model code becomes public!

- Code (will be) available on github
- Published with the next paper on the global JJ model
- Installable as python package
- Tutorials available
- Isochrones provided separately
- I'm open for user feedback, questions, suggestions, bug reports, etc...

Conclusions

- SAMs built on the basic principles of stellar dynamics can give a realistic description of the present-day state of the Galaxy.
- The abundant data from astrometric, spectroscopic and photometric largescale Galactic surveys provide constraints on many SAMs' parameters.
- By constraining SAMs' parameters at the different radii, we can reconstruct the MW evolution history.
- JJ model provides a detailed insight into the vertical structure of the MW disk. It is complemented with a stellar evolution library, and therefore, can be used for studying the observable stellar samples.
- Recently, the JJ model has been calibrated against the Gaia DR2 data in the Solar neighbourhood; 22 model parameters were self-consistently optimized. The new thin-disk SFR reveals two episodes of the recent SF enhancement which may point to the recent gas infall.
- The python code of the JJ model becomes public this year!